This notebook handles the rendering of scenario_1 - which is a simple case of a hypotheses - import dataset - transform dataset - generate report and evaluate the process and result.

knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())

Question

The simulated hypotheses is to generate a CPP(cerebral perfusion pressure) based on raw_data. The following chunk instantiates packages, functions and plans.

pkgload::load_all()
## ℹ Loading reproducibleFairTemplate
## Loading required package: tidyverse
## ── Attaching packages ─────────────────────────────────────── tidyverse 1.3.0 ──
## ✔ ggplot2 3.3.3     ✔ purrr   0.3.4
## ✔ tibble  3.1.1     ✔ dplyr   1.0.6
## ✔ tidyr   1.1.3     ✔ stringr 1.4.0
## ✔ readr   1.4.0     ✔ forcats 0.5.1
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag()    masks stats::lag()
## Loading required package: rmarkdown
## Loading required package: knitr
## Loading required package: magrittr
## 
## Attaching package: 'magrittr'
## The following object is masked from 'package:purrr':
## 
##     set_names
## The following object is masked from 'package:tidyr':
## 
##     extract
#source("R/packages.R")
#source("R/functions.R")
#source("R/functions_scenario_1.R")
#source("R/plan.R")

In order to avoid errors - the drake cache is cleaned.

drake::clean()
# check file existing
#file.exists("data/raw_data.xlsx")

The scenario_wrapper-function returns the instantiated scenario plan as drake “tibble”.

drake_history()
vis_drake_graph(scenario_wrapper())